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Abstract

Traffic forecasting approaches are critical to developing adaptive strategies for mobility. Traffic patterns have complex spatial

and temporal dependencies that make accurate forecasting on large highway networks a challenging task. Recently, diffusion

convolutional recurrent neural networks (DCRNNs) have achieved state-of-the-art results in traffic forecasting by capturing

the spatiotemporal dynamics of the traffic. Despite the promising results, however, applying DCRNNs for large highway

networks still remains elusive because of computational and memory bottlenecks. This paper presents an approach for

implementing a DCRNN for a large highway network that overcomes these limitations. This approach uses a graph-

partitioning method to decompose a large highway network into smaller networks and trains them independently. The

efficacy of the graph-partitioning-based DCRNN approach to model the traffic on a large California highway network with

11,160 sensor locations is demonstrated. An overlapping-nodes approach for the graph-partitioning-based DCRNN is

developed to include sensor locations from partitions that are geographically close to a given partition. Furthermore, it is

demonstrated that the DCRNN model can be used to forecast the speed and flow simultaneously and that the forecasted

values preserve fundamental traffic flow dynamics. This approach to developing DCRNN models that represent large high-

way networks can be a potential core capability in advanced highway traffic monitoring systems, where a trained DCRNN

model forecasting traffic at all sensor locations can be used to adjust traffic management strategies proactively based on

anticipated future conditions.

In the United States (U.S.) alone, traffic congestion
accounts for billions of dollars of economic loss because
of productivity loss from additional travel time and addi-
tional inefficiencies and energy required for vehicle oper-
ation. To address these issues, intelligent transportation
system (ITS) strategies seek to better manage and miti-
gate congestion and other traffic-related issues via a
range of data-informed strategies and highway traffic
monitoring systems (1). Near-term traffic forecasting is
a foundational component of these strategies. Accurate
forecasting across a range of normal, elevated, and
extreme levels of congestion is critical for improved traf-
fic control, routing optimization, and identification of
novel approaches for handling emerging patterns of con-
gestion (2,3). Furthermore, predictions and models from
machine learning methods can be used to delve more

deeply into the dynamics of a particular transportation
network to identify additional areas of improvement
beyond those enabled by improved prediction and con-
trol (4–6). Forecasting methodologies are also expected
to enable new forms of ITS strategies as they become
integrated into larger optimization and control
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approaches and highway traffic monitoring systems
(7,8). For example, the benefits of highly dynamic

route guidance and alternative transit mode pricing in
real time would be greatly aided by improved traffic
forecasting.

Traffic forecasting is a challenging problem. Key traf-
fic metrics, such as flow and speed, exhibit complex spa-
tial and temporal correlations that are difficult to model

with classical forecasting approaches (9–12). From the
spatial perspective, locations that are close geographical-
ly in the Euclidean sense (e.g., two locations located in
opposite directions of the same highway) often do not

exhibit a similar traffic pattern, whereas locations in the
highway network that are relatively far apart (e.g., two
locations separated by a mile in the same direction of the

same highway) can show strong correlations. Many tra-
ditional predictive modeling approaches cannot handle
these types of correlation. From the temporal perspec-
tive, because traffic conditions vary across different loca-

tions (e.g., diverse peak hour patterns, varying traffic
flow and volume, highway capacity, incidents, and inter-
dependencies), the time series data becomes nonlinear
and nonstationary, rendering many statistical time

series modeling approaches ineffective.
Recently, machine learning, in particular deep learn-

ing (DL) approaches, have emerged as high-performing
methods for traffic forecasting (13). Among these meth-
ods, the diffusion convolutional recurrent neural net-
work (DCRNN) is a state-of-the-art method developed

by Li et al. for short-term traffic forecasting (14).
DCRNN models complex spatial dependencies using a
diffusion process on a graph and temporal dependencies

using a sequence to sequence recurrent neural network.
Despite accurate forecasting results, however, modeling
large highway networks with DCRNN still remains chal-
lenging because of the computational and memory bot-

tlenecks. This paper focuses on developing and applying
DCRNN to a large highway network. This study is moti-
vated by the highway network of a state such as
California being �30 times larger than the size of the

highway networks for which DCRNN was originally
developed and demonstrated. The two main scaling chal-
lenges are that (1) the training data size for thousands of

locations is too large to fit in a single compute node
memory, and (2) the time required for training a
DCRNN on a large dataset can be prohibitive, rendering
the method ineffective for large highway networks.

Distributed data-parallel and model-parallel training
approaches utilize multiple compute nodes to overcome
these methods (15). In traditional computational science

domains, a common approach for scaling is domain
decomposition, wherein the problem is divided into

several subproblems that are then distributed over dif-

ferent compute nodes. While domain decomposition

approaches are not applicable in scaling typical DL

training, such as image and text classification, they are

well suited for the traffic forecasting problem with

DCRNN because traffic flow in one region of the high-

way network does not affect another region when the

regions are separated by a suitably large driving distance.

To that end, a graph-partitioning-based DCRNN

approach is proposed that partitions a large highway

network into subnetworks and trains a DCRNN for

each subnetwork independently. In contrast to distribut-

ed data-parallel and model-parallel training approaches,

multiple compute nodes are not a prerequisite for this

method because the independent DCRNNmodels can be

trained sequentially on a single compute node.

Consequently, this approach is more amenable for

implementation within traffic management centers

(TMCs) without the need to access cloud computing

resources. On the other hand, given such multinode

cloud/computing access, this method can provide signif-

icant benefit with respect to overall model training time.

Furthermore, it is shown that the short-term forecasting

accuracy can be improved by partitioning the highway

network, which results in smaller models that are easier

to train. The main contributions of this work are as

follows.

1. The efficacy of the graph-partitioning-based DCRNN

approach to model the traffic on a large California

highway network with 11,160 sensor locations is

demonstrated.
2. An overlapping-nodes approach—an improvement

strategy for the graph-partitioning-based DCRNN

that includes sensor locations from partitions that

are geographically close to a given partition—is

developed.
3. It is shown that DCRNN can be extended for multi-

output learning to forecast both flow and speed

simultaneously, as opposed to the previous DCRNN

implementation that forecast either speed or flow.

Related Work

Modeling the flow and speed patterns of traffic in a high-

way network has been studied for decades. Capturing the

spatiotemporal dependencies of the highway network is a

crucial task for traffic forecasting. The methods for

short-term traffic forecasting are broadly classified into

two categories: knowledge-driven and data-driven

approaches. In transportation and operational research,

knowledge-driven methods usually apply queuing
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theory, and Petri nets to simulate traffic behaviors (16–
20). Usually, those approaches estimate the traffic flow
of one intersection at a time. Traffic prediction for the
full highway system of an entire state has not been
attempted to date by using knowledge-driven
approaches.

Data-driven approaches have received notable atten-
tion in recent years. The methods include statistical tech-
niques such as autoregressive statistics for time series,
and Kalman filtering techniques (9,21). These models
are used mostly to forecast at a single sensor location
and are based on a stationary assumption about the
time series data. Therefore, they often fail to capture
nonlinear temporal dependencies and cannot predict
overall traffic in a large-scale network (14). Recently,
machine learning methods on short-term traffic forecast-
ing have emerged. More complex data modeling can be
achieved by these models, such as support vector
machines (SVMs) and artificial neural networks
(ANNs) (10–12,22). However, SVMs are computational-
ly expensive for large networks, and ANNs cannot cap-
ture the spatial dependencies of the traffic network.
Furthermore, the shallow architecture of ANNs make
the network less efficient compared with a deep learning
architecture.

Recently, deep learning models such as deep belief
networks and stacked autoencoders have been used to
capture effective features for short-term traffic forecast-
ing (23,24). Recurrent neural networks (RNNs) and their
variants, long short-term memory (LSTM) networks and
gated recurrent units (GRUs), show effective forecasting
because of their ability to capture the temporal depen-
dencies (25–28). However, spatial dynamics are often
missed my RNN-based methods. To capture the spatial
dynamics, researchers have used convolutional neural
networks (CNNs). Ma et al. proposed an image-based
traffic speed prediction method using CNNs, whereas Yu
et al. proposed spatiotemporal recurrent convolutional
networks for short-term traffic forecasting (29,30).
Spatial dynamics have been captured by deep CNNs,
and temporal dynamics have been learned by LSTM net-
works. In both, the highway network was represented as
an image, and the link was colored by speed. The model
was tested on only 278 links of the Beijing transportation
network. Zhang et al. also represented the flow of crowds
in a traffic network using grid-based Euclidean space
(31,32). The temporal closeness, period, and trend of
the traffic were modeled by using a residual neural net-
work framework. The researchers evaluated the model
on Beijing and New York City crowd flows. They used
two datasets: trajectories of taxicab GPS data of four
time intervals, and trajectories of NYC bikes during
one interval of time. Trip data included trip duration,

starting and ending sensor IDs, and start and end

times. The key limitation of these approaches is that

they do not capture non-Euclidean spatial connectivity.

Du et al. proposed a model with one-dimensional CNNs

and GRUs with the attention mechanism used to fore-

cast traffic flow on UK traffic data (33). The contribu-

tion of this method is multimodal learning by multiple

feature fusion (e.g., flow, speed, events, weather)on time

series data of one year. This dataset was composed of

34,876 15-min intervals. However, it was limited to a

narrow spatial dimension.
Recently, CNNs have been generalized from a 2D

grid-based convolution to a graph-based convolution in

non-Euclidean space. Yu et al. modeled the sensor net-

work as an undirected graph and proposed a deep learn-

ing framework, called a spatiotemporal graph

convolutional network, for speed forecasting (34). They

applied graph convolution and gated temporal convolu-

tion through spatiotemporal convolutional blocks. The

experiments were done on two datasets: BJER4, collect-

ed by the Beijing Municipal Traffic Commission, and

PeMS (Performance Measurement System) D7, collected

by the California Department of Transportation. The

maximum size of their dataset was 1,026 sensors of

California District 7. However, these spectral-based con-

volution methods require the graph to be undirected.

Therefore, moving from a spectral-based to a vertex-

based method, Atwood and Towsley first proposed con-

volution as a diffusion process across the node of the

graph (35). Later, Hechtlinger et al. developed convolu-

tion to graphs by convolving every node and its closest

neighbors selected by a random walk (36). However,

none of these methods could capture the temporal

dependencies.
Li et al. used the DCRNN method to forecast per-

formances for 15, 30, and 60 min on two datasets: a Los

Angeles dataset with 207 locations collected over 4

months, and a Bay Area dataset with 325 locations col-

lected over 6 months (14). Their results showed improve-

ment on the state-of-the-art baseline methods such as

historical average, an autoregressive integrated moving

average model with a Kalman filter, a vector autoregres-

sive model, a linear support vector regression, a feed-

forward neural network, and an encoder-decoder frame-

work using LSTM (9,37–40).
The approach of this study differs from these works in

several respects. None have addressed a large set of

sensor locations, whereas this study used 11,160 sensor

locations that cover the major part of the California

highway system. Moreover, this graph-partitioning-

based approach for large-scale traffic forecasting, using

overlapping nodes, and multi-output multitask
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forecasting, using DCRNN, significantly extends the ini-

tial DCRNN idea to real-world solutions.

Methodology

In this section, the DCRNN approach for traffic model-

ing is described, followed by graph partitioning for

DCRNN, the overlapping node method, and multi-

output learning.

Diffusion Convolutional Recurrent Neural Network

(DCRNN)

Formally, the problem of short-term traffic forecasting

can be modeled as a spatial-temporal time series forecast

defined on a weighted directed graph G ¼ ðV; e;AÞ,
where V is a set of N nodes that represent sensor loca-

tions, � is the set of edges connecting the sensor locations,
and A 2 RN�N is the weighted adjacency matrix that

represents the connectivity between the nodes in relation

to highway network distance. Given the graph G and the

time series data Xt�T0þ1 to Xt, the goal of the traffic fore-

casting problem is to learn a function h(.) that maps

historical data of T0 time steps at given time t to future

T time steps.

Xt�T0þ1; . . . ;Xt;G!hð:ÞXtþ1; . . . ;XtþT

In DCRNN, the temporal dependency of the histori-

cal data has been captured by the encoder-decoder archi-

tecture of a recurrent neural network (40,41). The

encoder steps through the input historical time series

data and encodes the entire sequence into a fixed-

length vector. The decoder predicts the output of the

next T time steps while reading from the vector. GRU

is used to design the encoder-decoder architecture (41).

Inside the encoder-decoder architecture of RNN, a dif-

fusion convolution operation is used to capture the spa-

tial dependencies. The diffusion process can be described

by a random walk on G (42). The traffic flow from one

node to the neighbor nodes can be represented as a

weighted combination of infinite random walks on the

graph. The matrix multiplications of RNN is replaced

with the diffusion convolution operation to make the

DCRNN cell, which is defined as

rt ¼ rðWr�G½Xt; ht�1� þ brÞ
ut ¼ rðWu�G½Xt; ht�1� þ buÞ
ct ¼ tanhðWc�G½Xtðrt � ht�1� þ bcÞ
ht ¼ ut � ht�1 þ ð1� utÞ � ct;

where Xt and ht denote the input and final state at time t,

respectively; rt, ut, and ct are the reset gate, update gate,

and cell state at time t, respectively; �G denotes the dif-
fusion convolution operation; and Wr, Wu, and Wc are
parameters for the corresponding filters. The diffusion
convolution operation (�G) over the input graph signal
X is defined as

W�GX ¼
XK�1

d¼0

ðWOðD�1
O AÞd þWIðD�1

I AÞdÞX

where K is a maximum diffusion steps; D�1
O A and D�1

I A
are transition matrices of the diffusion process and the
reverse one, respectively; DO and DI are the in-degree
and out-degree diagonal matrices, respectively; and WO

and WI are the learnable filters for the bidirectional dif-
fusion process. The in-degree and out-degree diagonal
matrices provide the capability to capture the effect of
the upstream as well as the downstream traffic.

During the training phase, the historical time series
data and the graph are fed into the encoder, and the
final stage of the encoder is used to initialize the decoder.
The decoder predicts the output of the next T time steps,
and the layers of DCRNN are trained by using back-
propagation through time. During the test, the ground
truth observations are replaced by previously predicted
output. The discrepancy between the input distributions
of training and testing can cause performance degrada-
tion. To resolve this issue, scheduled sampling has been
used, where the model is fed a ground truth observation
with a probability of �i or the prediction by the model
with a probability of 1� �i at the ith iteration (43). The
model is trained with a mean absolute error (MAE) loss
function, defined as

MAE ¼ 1

s

Xs

i¼1

jyi � ŷij;

where yi is the observed value, ŷi corresponds to the
forecasted values for the ith training data, and s denotes
the number of samples. See Li et al. for a detailed expo-
sition on DCRNN (14).

Graph-Partitioning-Based DCRNN

For the graph-partitioning-based DCRNN approach,
the large graph G is partitioned into k subgraphs
such as G ¼ fG0; . . . ;Gk�1g ¼ ½fV0; e0g; fV2; e2g; . . . ;
fVk�1; ek�1g�, where each ei consists only of the edges
between nodes in Vi. Each subgraph has a set of histor-
ical time series data X ¼ fX0; . . . ;Xk�1g, and the adja-
cency matrix A ¼ ½A0; . . . ;Ak� is calculated. Now, each
subgraph can be trained independently.

For selecting the graph partitions, various graph clus-
tering and community detection methods have been
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developed, such as multilevel k-way graph partitioning,
multilevel recursive bisection, spectral clustering, and
Louvain (44–48). The different clustering methods were
compared and it was found that multilevel k-way parti-
tioning has several advantages over all other methods
(see the Supporting Experiments, Impact of graph parti-
tioning methods section, for the comparison). This
method can partition a million-node graph in a few sec-
onds with tightly connected clusters. It takes the adja-
cency matrix as input and divides it into multiple
partitions in three phases: (1) coarsening phase—the
graph is coarsened down to a smaller graph with fewer
vertices and a set of vertices is collapsed iteratively to
form a single vertex; (2) initial partitioning phase—the
smaller coarsened graph is partitioned by using multi-
level k-way partitioning, where k is the number of parti-
tions (45); and (3) uncoarsening phase—the partitions
are projected back to the original graph by backtracking
through the coarsened graph. To get tightly connected
partitions, nodes are swapped between partitions by
using the Kernighan-Lin algorithm (49).

An example of applying the k-way partitioning algo-
rithm on the Los Angeles region (2,036 sensors) is shown
in Figure 1. Here, the graph with 2,036 nodes was par-
titioned into eight parts by using the adjacency matrix as
input to the partitioning algorithm and the partitions

were rendered in different colors. Each partition has

approximately 254 nodes.

Overlapping Nodes

In Figure 1, it is observed that nodes at the boundary of

any partition lose their neighboring correlated nodes to

nearby partitions despite the shorter driving distance.

This issue will become critical and affect the prediction

accuracy of DCRNN when the number of partitions

increases. To address this issue, an overlapping-nodes

approach is developed wherein, for each partition, spa-

tially correlated nodes from other partitions are found

and included. Consequently, the nodes that are near the

boundary of the partition will appear in more than one

partition.
A naive approach for finding the correlated nodes

consists of computing nearest neighbors for each node

in the partition based on the driving distance, and

excluding the nodes already included in the partition.

The disadvantage of this approach is that it can include,

for a given node, several spatially correlated nodes that

are close to each other. This can lead to an increase in the

number of nodes per partition and, consequently, higher

training time and memory requirements. This issue is

illustrated on a partition of the San Joaquin area,

Figure 1. Result of k-way partitioning on Los Angeles region: 2,036 sensor locations are partitioned into eight parts, with each part
rendered in different colors.
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District 10 in Figure 2, where Figure 2a shows a small
partition with 11 nodes rendered in red cross symbols,
and Figure 2b shows the same partition after adding the
162 overlapping nodes rendered in black dot symbols.
After adding the overlapping nodes, the total number
of nodes become 15 times more than the original parti-
tion. Therefore, the spatially correlated nodes are down-
sampled from other partitions as follows: given two
spatially correlated overlapping nodes from a different
partition, only one is selected and the other is removed if
they are within D0 driving distance miles, where D0 is a
parameter.

Figure 2c shows the results after downsampling with a
distance threshold of 1 mi. The total number of nodes
becomes 40 after after downsampling.

Multi-Output Forecasting with a Single Model

Previously, DCRNN was used to forecast speed based
on historical speed data. The input and output layers of
the DCRNN are customized for multi-output forecast-
ing such that a single DCRNN model can be trained and
used for forecasting speed and flow simultaneously. The
three key modifications were needed for multi-output
forecasting: (1) Normalization of speed and flow: to
bring speed and flow to the same scale, normalization
was done separately on the two features using the stan-
dard scalar transformation. The normalized values of
speed are given by zsp ¼ xsp�lsp

rsp
, where lsp is the mean

and rsp is the standard deviation of the speed values
xsp. The same method was applied for normalizing the
flow values (zfl ¼ xfl�lfl

rfl
, where lfl and rfl are the standard

deviation of the flow values xfl). An inverse transforma-
tion was applied to the normalized speed and flow fore-
casting values to transform them to the original scale (for

computing error on the test data); (2) Multiple output

layers in the DCRNN: in the previous study of DCRNN,

the diffusion convolution layer learns P-dimensional

input, such as speed and flow, and predicts Q-dimension-

al output, such as speed and flow; (3) Loss function: for

multi-output training, a loss function was used of the

form

MAEmulti ¼ MAEsp þMAEfl

¼ 1

s

Xs

i¼1

jyspi � ŷspi j þ
1

s

Xs

i¼1

jyfli � ŷfli j;

where yspi and yfli are observed speed and flow values,

respectively; ŷspi and ŷfli are corresponding forecast

values, respectively, for the ith training data; and s is

the total number of training points.

Experimental Results

First, the dataset of the California highway network used

for these experiments is described. Next, the efficacy of

the DCRNN model is evaluated with respect to the

number of partitions, and the model errors are analyzed

using a sensitivity analysis approach. Then, the impact of

overlapping nodes and of hyperparameter search on the

DCRNN accuracy are studied. The section is concluded

with a demonstration of multi-output forecasting using a

graph-partitioning-based DCRNN.

Dataset: California Highway Network

This approach is evaluated on the California highway

network. Data from PeMS is used, which provides

access to real-time and historical performance data

Figure 2. Example after adding overlapping nodes: (a) partition without overlapping nodes, (b) partition after adding overlapping nodes,
(c) partition after downsampling the overlapping nodes with distance threshold of 1 mi.
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from over 39,000 individual sensors (50). The individual
sensors placed on the different highways are aggregated
across several lanes and are fed into vehicle detector
stations. Vehicle detector stations include a variety of
sensors such as inductive loops, radar, and magneto-
meters. The sensors may be located on high-occupancy
vehicle (HOV) lanes, mainlines, on-ramps, and off-
ramps. The dataset covers nine districts of California—
D3 (North Central) with 1,212 stations, D4 (Bay Area)
with 3,880 stations, D5 (Central Coast) with 382 sta-
tions, D6 (South Central) with 624 stations, D7 (Los
Angeles) with 4,864 stations, D8 (San Bernardino) with
2,115 stations, D10 (Central) with 1,195 stations, D11
(San Diego) with 1,502 stations, and D12 (Orange
County) with 2,539 stations—giving a total of 18,313
stations listed by location. Detectors capture samples
every 30 s. PeMS then aggregates that data to the gran-
ularity of 5 min, an hour, and a day. The data include
timestamp, station ID, district, freeway, direction of
travel, total flow, and average speed (mph).

PeMS does not list the latitude and longitude for the
stations IDs, which are essential for defining the connec-
tivity matrix used by DCRNN. Instead, the latitude and
longitude are associated with postmile markers of every
freeway given the direction. The latitude and longitude
for sensor IDs were found by matching the absolute
postmile markers of every freeway. Linear interpolation
was used to find the exact latitude and longitude, if the
absolute postmile markers did not match exactly.

The official PeMS website shows that 69.59% of the
�18K stations are in good working condition. The
remaining 30.41% do not capture time series data
throughout the year and therefore were excluded from
the dataset. The final dataset has speed and flow of
11,160 stations from January 1, 2018, to December 31,
2018, with a granularity of every 5 min.

It was observed that the flow and speed values are
missing for multiple time periods in the time series
data. The percentage of missing data is small—for
speed 0.06% (698,162 out of 1,173,139,200 data points)
and for flow 0.04% (504,688 out of 1,173,139,200 data
points). Three different imputation techniques were
explored—temporal mean, temporal median, and linear
interpolation—and no significant difference was found
because the percentage of missing data is less than 1%.
The details of the experiments and results are reported in
the Supporting Experiments, Missing data imputation,
section. Therefore, the missing data was replaced by
the temporal mean.

Experimental Setup

The highway network of 11,160 sensors was represented
as a weighted directed graph. From the 1-year data, the
first 70% of the data (36 weeks approx.) was used for

training and the next 10% (5 weeks approx.) and 20%
(10 weeks approx.) of the data was used for validation
and testing, respectively. Different training data sizes
were experimented with by selecting 2, 4, 12, 20, and
36 weeks of data and it was found that using 36 weeks
results in better accuracy. Given 60 min of time series
data on the nodes in the graph, a forecast was made for
the next 60 min. The dataset was prepared in a way to
look back (T0) for 60 min or 12 time steps (granularity of
the data is 5 min) to predict (T) the next 60 min or 12
time steps. The T0 window slides by 5 min or one time
step and repeats until all the available data is consumed.
The forecasting performance of the models was evaluat-
ed on the test data by using MAE.

The Open Source Routing Machine (OSRM) was
used to compute the highway network distance between
the nodes, which is required by the adjacency matrix for
DCRNN (51). Given the latitude and longitude of two
nodes, a locally running OSRM gives the shortest driving
distance between them using OpenStreetMap (52). To
speed up the computation, first, 30 nearest neighbors
for each node were found using the Euclidean distance,
and then the OSRM queries were limited only to the
nearest neighbors. As in the original DCRNN work,
the adjacency matrix was built using a thresholded
Gaussian kernel: Aij ¼ expð� distðvi;vjÞ2

r2 Þ if distðvi; vjÞ2 �
thresh; otherwise 0, where Aij represents the edge
weight between node vi and node vj; distðvi; vjÞ denotes
the highway network distance from node vi to node vj; r
is the standard deviation of distances; and thresh is the
threshold, which introduces the sparsity in the adjacency
matrix (53).

For the experimental evaluation, a GPU-based cluster
at the Argonne Leadership Computing Facility was used.
It has 126 compute nodes, where each node consists of
two 2.4 GHz Intel Haswell E5-2620 v3 processors (six
cores per CPU, 12 cores total), one NVIDIA Tesla K80
(two GPUs per node), 384 GB RAM per node, and 24
GB GPU RAM per node (12 GB per GPU). Python
3.6.0, TensorFlow 1.3.1 was used, and Metis 5.1.0.
DCRNN code of Li et al., available on GitHub, was
customized for this implementation (14,54). Given k par-
titions of the highway network, partition-specific
DCRNNs were trained simultaneously on GPU nodes.
Two MPI ranks were used per node, where each rank ran
a partition-specific DCRNN using one GPU. The input
data for different partitions (time series and adjacency
matrix of the graph) was prepared offline and loaded
into the partition-specific DCRNN before the training
started. It was noted that such simultaneous training is
not required, in particular when a multi-GPU cluster is
not available. The training on a single GPU would con-
sist of running the training for each partition
sequentially.
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The default hyperparameter configuration values for
the DCRNN were used: batch size—64; filter type—
random walk (used to model the stochastic nature of
highway traffic); number of diffusion steps—2; RNN
layers—2; RNN units per layer—16; threshold for gra-
dient clipping—5; initial learning rate—0.01; and learn-
ing rate decay—0.1. The model was trained by
minimizing MAE using the Adam optimizer (55).

Number of Partitions

Here, the efficacy of the graph-partitioning-based
DCRNN is demonstrated.

The multilevel k-way graph-partitioning method from
the Metis software package was used to create 2, 4, 8, 16,
32, 64, and 128 partitions of the California highway net-
work graph (56). The average number of nodes in each
cases was 5,580, 2,790, 1395, 697, 348, 174, and 87,
respectively. Partitions of size 1, the full network, and
2 are not presented because the training data was too
large to fit in the memory of a single K80 GPU node.
Given k partitions, k=2 nodes (or k GPUs) are used to
run the partition-specific DCRNNs simultaneously. The
training time is defined as the maximum time taken by
any partition-specific DCRNN training, excluding the
data loading time.

Figure 3 shows the distribution of MAE of all 11,160
nodes obtained by using box-and-whisker plots. From the
results it can be observed that medians, 75% quantiles,
and the maximum MAE values show a trend in which an
increase in the number of partitions decreases the MAE.
From 4 to 64 partitions, the median of MAE decreases
from 2.11 to 2.02. The increase in accuracy can be attrib-
uted to two factors: (1) the effectiveness of the k-way
graph partitioning of Metis that separates sensor locations
that were far apart with respect to driving distance, and
(2) the model training for each partition becomes relative-
ly easier as the number of nodes in a given partition
decreases. For 128 partitions (with only 87 nodes per par-
tition), the observed MAE values are higher than for 64
partitions. The reason is that the graph partition results in
a significant number of spatially correlated nodes ending
up in different partitions. This can be assumed as a tip-
ping point for graph partitioning, which relates to the size
and spread of the actual network.

Figure 4 shows the training time required for different
numbers of partitions. The time decreases significantly
with an increase in the number of partitions. In addition,
This approach reduces the training time from 2,820 min
on 4 partitions (¼ 4 GPUs) to 178.67 min on 64 parti-
tions (¼ 64 GPUs), resulting in a 15.78x speedup. There
is an almost linear speedup until 64 partitions, where
doubling the number of partitions (and GPUs) results
in �2X speedup. However, the speedup gains drop sig-
nificantly with 128 nodes. At this point, with only

87 nodes per partition there is not enough workload

for the GPU.
Since the best forecasting accuracy and speedup were

obtained by using 64 partitions, it was used as a default

number of partitions in the rest of the experiments.

Error Analysis

Figure 3 shows several outliers (large errors) in the MAE

distribution. Here, using a decision tree method for sen-

sitivity analysis, the factors that led to these large errors

were investigated.
The factors studied are (1) sensor type (loop detector,

magnetometers, etc.), (2) district where the sensor is

located (Los Angeles, Bay Area, etc.), (3) lane type

(mainline, HOV, etc.), and (4) traffic dynamics at a

given sensor location measured by the coefficient of var-

iation (standard deviation (r)/mean (l) of the time series

data). The coefficient of variation becomes large (small)

when the variations in the speed values are large (small).

Figure 3. Distribution of mean absolute error (MAE) for different
number of partitions.

Figure 4. Training time for diffusion convolutional recurrent
neural networks (DCRNNs) with different numbers of partitions.
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For each node, the values of the four factors are used as
input (independent variables), and the corresponding
forecasting error values (MAE) from 64-partition
DCRNN are used as output (dependent variables). The
MAE values are separated into four classes: class 0 if
MAE is less than 1, class 1 if MAE is between 1 and 3,
class 2 if MAE is between 3 and 5, and class 3 if MAE is
greater than 5. Consequently, for each node there is an
input-output pair; the dataset comprises the pair from all
the nodes.

Next, a decision tree was trained from the scikit-learn
package, a supervised machine learning method, to
model the error classes as a function of the four factors
(57). The decision tree was selected because of the model
interpretability, which can be used for analyzing the fac-
tors under study. 80% of the data was used for training
and 20% for testing. To avoid overfitting, the depth of
the tree was set to 8; all other values were set to the
default as in scikit-learn decision tree interface. The deci-
sion tree model obtained 82.11% and 78.18% accuracy
on the training and testing sets, respectively. The high
accuracy indicates that the error classes can be modeled
and explained through the four factors.

The trained decision tree model provides a normalized
importance score (between 0 and 1) for each factor. The
values for traffic dynamics, district, sensor type, and lane
type were 0.87, 0.07, 0.04, and 0.02, respectively. These
results show that the traffic dynamics has the most sig-
nificant impact on the forecasting error and that the
other factors do not have impact. Figure 5 shows the
distribution of MAE values with respect to the coeffi-
cient of variation. A clear trend is observed in which
the median (and other quantiles) of the MAE distribu-
tion increases linearly with respect to the coefficient of
variation.

To take a closer look at the sensors with high errors,

class 3 (MAE > 5) was analyzed. This class had 449

sensors, approximately 4% of the total data (449 out

of 11,160 sensors). Of these 449 sensors, 244 were from

D7 (Los Angeles), 85 from D4 (Bay Area), 42 from D8

(San Bernardino), and 36 district D12 (Orange County).

Given the forecasting horizon of 60 min, forecasting

becomes difficult for the nodes with a high coefficient

of variation. For these nodes, the error decreases with

a decrease in the forecasting horizon. For the 30- and 15-

min forecast horizons, only 125 and 36 sensors have

MAE values that are greater 5 mph. From these results,

it is inferred that for the nodes with high traffic dynam-

ics, good forecasting accuracy can be achieved by reduc-

ing the forecasting horizon to 15 min.

Impact of Overlapping Nodes

Here, the impact of overlapping nodes on the forecasting

accuracy of the graph-partitioning-based DCRNN is

discussed.
Table 1 describes four different experiments. The

graph-partitioning-based DCRNN was trained on 64

partitions of the California highway network. This var-

iant is referred to as DCRNN_64_naive. Training time

took 178 min. After training, the speed was forecast for

60 min on the test data and the MAE was calculated for

each node. The results are summarized in the first row of

Table 1 and the 64 partition results in Figure 6. It is

observed that the MAE values of 1,716, 6,729, 2,266,

and 449 nodes are less than 1, between 1 and 3, between

3 and 5, and greater than 5, respectively.
The graph-partitioning-based DCRNN was also

trained on 64 partitions with overlapping nodes. Nodes

were downsampled with different distance threshold (D0)
values: 0.5 mi, 1 mi, 1.5 mi, 2 mi, and 3 mi. The results

showed no significant improvement beyond the 1 mi

threshold; therefore, 1 mi was used as the distance

threshold for the experiments. In a given partition,

while calculating the MAE value for each node, the over-

lapping nodes were not considered because they are

included in a different partition, where their MAE

values will be computed. This variant is referred to as

DCRNN_64_overlap. The results are shown in row 2 of

Table 1. It is observed that DCRNN_64_overlap outper-

forms DCRNN_64_naive. With reference to the latter,

the number of nodes with MAE values less than 1 has

increased from 1,716 to 1,837; similarly, the number of

nodes with MAE values between 1 and 3, 3 and 5, and

greater than 5 decreased from 6,729 to 6,687, from 2,266

to 2,204, and from 449 to 432, respectively. It is observed

that the training time increased from 178.67 min to

221.04 min, which can be attributed to the increase in

the number of nodes per partition.

Figure 5. Impact of the coefficient of variation of the data on the
forecasting accuracy. The coefficient of variation of 11,160 sensors
is binned into six categories. The number of nodes in each distri-
bution is shown above each box.
Note: MAE¼mean absolute error.

Mallick et al. 481



Earlier, it was noted that the forecasting accuracy
decreased after increasing the number of partitions
from 64 to 128, as a significant number of spatially cor-
related nodes ended up in different partitions. It is
hypothesized that including overlapping nodes can
improve forecasting accuracy significantly for those par-
titions. Therefore, to analyze the impact of the overlap-
ping nodes in different partition scales, 512 and 1,024
partitions were considered where each graph partition
contains approximately 21 and 11 nodes, respectively.
The overlapping nodes were added to each partition by
downsampling them with a 1-mi distance threshold. The
graph-partitioning-based DCRNN model was then
trained and tested for 64, 128, 512, and 1,024 partitions
with and without overlapping nodes. Figure 6 shows the
distribution of MAE values at each scale with and with-
out overlapping nodes. The median of MAE decreases
from 2.02 to 2.01 for 64 partitions, from 2.05 to 2.03 for
128 partitions, from 2.15 to 2.00 for 512 partitions, and
from 2.22 to 2.04 for 1,024 partitions. These results show
that the impact of overlapping nodes becomes more sig-
nificant when the subgraph becomes very small and spa-
tially correlated neighboring nodes belong to different
partitions.

Impact of Hyperparameter Tuning

Here, the impact of hyperparameter search on the fore-
casting accuracy of the graph-partitioning-based
DCRNN is investigated.

The hyperparameters that can impact the forecasting
accuracy of the DCRNN include batch size, filter type
(i.e., random walk, Laplacian), maximum diffusion
steps, number of RNN layers, number of RNN units
per layers, a threshold max_grad_norm to clip the gra-
dient norm to avoid exploring gradient problem of
RNN, initial learning rate, and learning rate decay (58).

DeepHyper, a scalable hyperparameter search (HPS)
package for neural networks, was used to search for
high-performing hyperparameter values for
DCRNN_64_naive and DCRNN_64_overlap (59). Five
months of data (from May 2018 to October 2018) from
partition 1 were used. As the stopping criteria, 32 nodes

with a 12-h wall-clock time were used. DeepHyper sam-
pled 518 and 478 hyperparameter configurations for
naive and overlapping approaches, respectively. The
best hyperparameter configurations were selected from
each and used to train the models and infer the forecast-
ing accuracy. These two variants are referred to as
DCRNN_64_naive_hps and DCRNN_64_overlap_hps.
The results are shown in rows 3 and 4 of Table 1. It is
observed that DCRNN_64_naive_hps outperforms
DCRNN_64_naive, where hyperparameter tuning
improved the accuracy of several nodes. The number
of nodes with MAE values less than 1 and between 1
and 3 increased from 1,716 to 1,920 and from 6,729 to
6,897, respectively. The number of nodes with MAE
values between 3 and 5, and greater than 5 decreased
from 2,266 to 1,980 and from 449 to 363, respectively.
A similar trend is also observed with the comparison of
DCRNN_64_overlap and DCRNN_64_overlap_hps. In
particular, the number of nodes with MAE values
between 3 and 5, and greater than 5 decrease from
2,204 to 1,972 and from 432 to 351, respectively.
Moreover, hyperparameter tuning resulted in an increase
in the number of trainable parameters, which led to an
increase in training time from 221.04 min to 461.57 min.

Table 1. Results of Graph-Partitioning-Based Diffusion Convolutional Recurrent Neural Network (DCRNN) with Overlapping Nodes
and Hyperparameter Search

MAE <1 1 <¼ MAE <3 3 <¼ MAE <5 MAE¼>5

Trainable

parameters

Training time

(minutes)

Forecast time

(minutes)

1. DCRNN_64_naive 1,716 6,729 2,266 449 14,608 178.67 4.38

2. DCRNN_64_overlap 1,837 6,687 2,204 432 14,608 221.04 4.88

3. DCRNN_64_naive_hps 1,920 6,897 1,980 363 19,808 287.05 4.92

4. DCRNN_64_overlap_hps 1,897 6,940 1,972 351 38,048 461.57 5.83

Note: MAE¼mean absolute error.

Figure 6. Impact of overlapping nodes in different partition
scales.
Note: MAE¼mean absolute error.
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This is because with overlapping nodes, DCRNN models
already reach high accuracy; further improvements with
hyperparameter search require a significant increase in
the number of trainable parameters, which increases
the training time. No significant difference was observed
in the time required for forecasting by the different
trained models on the test data. An exception is the
DCRNN_64_overlap_hps case, where the large number
of additional trainable parameters increases the forecast-
ing time by 1 min (5.83 min).

Next, it was tested whether hyperparameter search on
individual partitions can improve the accuracy further.
Two partitions were selected (partition 38 from the Bay
Area with 179 sensors and partition 62 from South
Central with 184 sensors) from 64 partitions, and a
hyperparameter search was run using the same setup.
The best hyperparameter configurations were selected
for each partition and used to train and infer the fore-
casting accuracy on the same partition. The results of

Figure 7. Box plot distribution of mean absolute error (MAE) for
speed and flow forecasting. From left to right the box plots show
the results of: speed forecasting from speed only model, speed
forecasting from multi-output model, flow forecasting from flow
only model, and flow forecasting from multi-output model.

Figure 8. Fundamental traffic flow diagram and corresponding speed and flow forecasting results: (a) Closeness of the predicted flow and
speed on sensor 717322 with fundamental traffic flow diagram. (b) Speed forecasting on sensor 717322 used to estimate the traffic flow
diagram of Figure 8a. (c) Flow forecasting on sensor 717322 used to estimate the traffic flow diagram of Figure 8a.
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hyperparameter tuning on individual partitions were
compared with results of DCRNN_64_naive_hps on
the same partitions. For partition 38, the number of

nodes with MAE values less than 1, between 1 and 3,
and between 3 to 5 increased from 5 to 6, from 118 to
119, and from 38 to 41, respectively. The number of
nodes with MAE values greater than 5 decreased from

18 to 13. Similarly, for partition 62, the number of nodes
with MAE values less than 1 and between 1 and 3
increased from 46 to 48 and from 121 to 123, respective-
ly. The number of nodes with MAE values between 3 to

5 decreased from 13 to 9; nodes with MAE values greater
than 5 had no effect and remained at 4. The number of
trainable parameters for partition 38 and 62 were 19,520
and 37,856, respectively. The results show that the hyper-

parameter search on individual partitions can improve
the accuracy slightly but not significantly.

Multi-Output Forecasting

The graph-partitioning-based DCRNN model was

trained to forecast both speed and flow simultaneously
and the results were compared with those of models that
predict either speed or flow. Figure 7 shows the distribu-
tion of MAE values. The median of MAE from the

speed-only model (first box plot) is 2.02, which was
reduced to 1.98 with the multi-output model (second
box plot). Similarly, the median of MAE from the
flow-only model (third box plot) is 21.20, which was

reduced to 20.64 with the multi-output model (fourth
box plot). It was found that the multi-output model
obtains MAE values that are significantly lower than
those of the speed-only or flow-only models (a paired

t-test p�values of 9:20� 10�4 for speed and 5:77�
10�5 for flow). The superior performance of multi-
output forecasting can be attributed to multitask

learning (60). The key advantage is that it leverages the
commonalities across speed and flow learning tasks,
which are related. This results in improved learning effi-
ciency and consequently improved forecasting accuracy
when compared with training the models separately.

Figure 8a shows speed and flow forecasting results of
a congested node (ID: 717322 located on Highway 60-E
in the Los Angeles area) in a scatter plot. It can be seen
that the speed and flow forecast values closely follow the
fundamental flow diagram with three distinct phases:
congestion, bounded, and free flow. This forecasting pat-
tern of DCRNN shows that the model has learned and
preserved the properties of the traffic flow. Figure 8, b
and c, shows the time-varying speed and flow corre-
sponding to Figure 8a for the same sensor 717322.

Conclusion and Future Work

A graph-partitioning approach was developed to divide a
large highway network into several partitions and a
DCRNN model was trained for each of the partitions
independently. An overlapping-nodes improvement
strategy was implemented that includes data from parti-
tions that are geographically close to a given partition.
It was shown that DCRNN can be extended for
multi-output learning to forecast both flow and speed
simultaneously as opposed to a previous DCRNN imple-
mentation that predicted either speed or flow. The effec-
tiveness of the proposed approach was demonstrated
using Caltrans PeMS data to model the traffic on a
large California highway network with 11,160 sensor
locations. The model error was analyzed and it was
shown that higher traffic dynamics caused by rapid
changes in traffic behavior lead to high forecasting
error. It was also shown that including overlapping
region can be more impactful when the partition size
become small and spatially correlated nodes belong to
different partitions.

The DCRNN model, once trained, can be run on tra-
ditional hardware such as CPUs for forecasting without
the need for multiple GPUs and could be readily inte-
grated into a traffic management center. Once integrated
into such a center, the scale and accuracy of the forecast-
ing techniques discussed in this work have the potential
to enable more proactive decision-making as well as
better decisions themselves given the capability to make
large-scale and accurate forecasts in relation to future
traffic states.

The authors plan to extend the approach to large-
scale traffic forecasting with mobile device data. The
goal will be to determine whether mobile device data
can act as a proxy for inductive loop data, which could
be used either to substitute for poorly working loops, or
to extend the scope of the monitoring to areas where

Figure 9. Impact of different graph-partitioning methods on
forecasting error of the graph-partition-based diffusion convolu-
tional recurrent neural network (DCRNN) on 64 partitions.
Note: MAE¼mean absolute error.
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loops would be prohibitively expensive. It is also planned

to combine DCRNN with large-scale simulations to inte-

grate realistic speed and flow forecasts into active traffic

management decision algorithms. Furthermore, it is

planned to develop models for route and policy scenario

evaluation in adaptive traffic routing and management

studies.

Supporting Experiments

Several supporting experiments are detailed in this

section.

Missing Data Imputation

Three data imputation methods were studied: (1) tempo-

ral median, which takes the median of similar time and

day of the week over a period, temporal mean, which

takes the mean of similar time and day of the week

over a period of time to fill the missing value, and (3)

linear interpolation. These methods were evaluated on a

partition from the D10 Central area with 180 nodes,

where 0.054% of data was missing. Three datasets were

created using these imputation methods and the model

was trained. For training and testing data, �36 weeks of

time series data from January 1, 2018, to September 13,

2018, and �10 weeks of time series data from October

20, 2018, to December 31, 2018, were used. It was found

that the median of MAE distribution is 1.77 for the tem-

poral mean and interpolation and 1.78 for the temporal

median. The results show that missing data imputation

does not have a significant impact on the forecasting

accuracy. This can be attributed to the small percentage

of the missing data (less than 1%). Therefore, the miss-

ing data were replaced by temporal mean. Weekends are

handled separately from normal working days.

Impact of Graph-Partitioning Methods

The impact of different graph-partitioning approaches

was analyzed by comparing the default multilevel k-

way graph partitioning approach with spectral cluster-

ing, multilevel recursive bisection, and Louvain methods

(45–48). For the multilevel k-way graph-partitioning and

multilevel recursive bisection approaches, the Metis soft-

ware package was used (56). For spectral clustering, the

sklearn implementation was used (61). For Louvain,

python-louvain GitHub implementation was used (62).

Multilevel k-way graph partitioning, spectral clustering,

and multilevel recursive bisection methods take the adja-

cency matrix and number of partitions (k) as input and

produce k partitions as output. The number of partitions

k was set to 64 for each of the three methods. In contrast

to three methods, Louvain takes the adjacency matrix as

input and produces an optimized number of partitions as
output, in this case 110 partitions.

Figure 9 shows the distribution of the MAE values
obtained on the test data from four graph-partitioning
methods. The MAE values obtained with k-way graph
partitioning (2.02), spectral clustering (2.02), and multi-
level recursive bisection (2.03) are similar. The median of
MAE with the Louvain method is 2.06, which is larger
than that of other methods.

The k-way graph partitioning was adopted because of
the speed advantage. In particular, the complexity of the
k-way graph partitioning approach is Oðe� kÞ (where e
is the number of edges in the graph and k is the number
of partitions), and the complexity of spectral clustering is
N3 (where N is the number of nodes in the graph). In a
sparse graph such as ours, the number of edges is much
smaller than the number of nodes. Therefore, the com-
plexity of the k-way graph partitioning approach is much
lower than that of spectral clustering. To perform 64
partition on a graph of 11,160 nodes, the multilevel k-
way graph-partitioning method of Metis took only 0.030
s, whereas spectral clustering took 255.56 s.

Comparison with Other Methods

DCRNN is compared with four methods: (1) lasso
regression (LR): a ¼ 0:1, the multiplier of the L1 term
(implemented with sklearn Python package) (63); (2)
autoregressive integrated moving average (ARIMA):
order (5,1,0) is used for AR parameters, differences,
and MA parameters (implemented with statsmodel
python package) (37); (3) standard feed-forward neural
networks (FNN): two hidden layers and 256 neuron per
layer (implemented with Keras) (39); and (4) random
forests (RF): number of trees in the forest is 100 (imple-
mented with scikit-learn Python package) (64).

The METER-LA dataset in Li et al. was used for
model comparison (14). The dataset contains 207 sensors
and the time series data of 4 months collected from
March 1, 2012, to June 27, 2012. As described earlier,
70% (from 1 March to 2 May) of the data was used for
training, 10% (from 23 May to 4 June) of the data for
validation, and 20% (from 4 June to 27 June) of the data
for testing. Given 60 min of time series data, all of the
models forecast for the next 60 min. The results showed
that DCRNN outperformed all other methods. It
achieved MAE of 3.60, which is lower than that of LR
(7.89), ARIMA (7.73), RF (8.40), and FNN (4.49).
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